1. (i) Visible (light)

(ii) work function =
$$1.9 \times 1.6 \times 10^{-19}$$
 M1

work function =
$$3.04 \times 10^{-19}$$
 (J) $\approx 3.0 \times 10^{-19}$ (J) A0

(iii) 1.
$$E = hf / E = \frac{hc}{\lambda}$$
 C1

$$E = \frac{6.63 \times 10^{-7} \times 3.0 \times 10^{-7}}{5.1 \times 10^{-7}}$$

$$E = 3.9 \times 10^{-19} \text{ (J)}$$
A1

2.
$$hf = \phi + KE_{(max)} / hf = \phi + \frac{1}{2} mv^2$$

(Allow $E = \phi + \frac{1}{2} mv^2$ if E is qualified in (iii)**1.**) C1
 $3.9 \times 10^{-19} = 3.0 \times 10^{-19} + KE_{(max)} / 3.9 \times 10^{-19} = 3.04 \times 10^{-19} + KE_{(max)}$ C1
 $KE = 9.0 \times 10^{-20}$ (J) / KE = 8.6×10^{-20} (J) (Possible ecf) A1

(v) number of photons =
$$\frac{80 \times 10^{-3}}{3.9 \times 10^{-19}}$$
 ($\approx 2.05 \times 10^{17}$) (Possible ecf) C1

number of electrons =
$$0.07 \times \frac{80 \times 10^{-5}}{3.9 \times 10^{-19}}$$

number of electrons = $1.44 \times 10^{16} (s^{-1}) \approx 1.4 \times 10^{16} (s^{-1})$ A1

2. (i) The minimum frequency needed to free an electron
(from the surface of a metal)B1(ii)1 Line extended intersects (the f axis at) this value / At this frequency,
$$E_k = 0$$
B1(ii)2 $(\phi =) h \times 5.0 \times 10^{14}$ / $(\phi =) 6.63 \times 10^{-34} \times 5.0 \times 10^{14}$ C1
work function energy = 3.3×10^{-19} JA1(iii)1 1 The gradient / slope of the line is the same
The gradient is equal to h / independent of the metalB1(iii)2 The line is shifted to the right
The threshold frequency is greaterB1

[11]

[8]

B1

Any six from	m: (Allow AW)	
1. <u>Photoel</u>	ectric effect is the removal of electrons (from metals) when	DI
exposed	d to light / u.v. /e.m. radiation / photons	B1
2. <u>Surface</u>	electrons are involved / electrons released from the surface	B1
3. A singl	e photon interacts with a single electron	B1
4. Energy	is <u>conserved</u> (in the interaction)	B1
5. Energy	of photon = hf or $\frac{hc}{\lambda}$	B1
6. Referen	nce to Einstein's photoelectric equation: $hf = \phi + KE_{(max)}$	C1
7. photon	energy = work function (energy) + (maximum) KE (of electron)	A1
8. PE effe	ct takes place / electron(s) released when $hf > \phi / hf = \phi / frequency$	
is great	er / equal to threshold frequency	B1
9 The (m	aximum) KF of electron is independent of intensity when electrons	D 1
are emi	tted	B1
10. Intensit	y increases the rate / number of electrons when emission occurs	B1
11. PE effe	ct does not take place / no electrons emitted when $hf < \phi$ / frequency	
< thresh	hold frequency	B1
12. Intensit	v has 'no effect' when there is no emission of electrons	B1
OWC for '	organisation'	R1

4. (a) (i)
$$E = hc/\lambda = 6.63 \times 10^{-34} \times 3.0 \times 10^{8}/6.3 \times 10^{-7}$$

mark is for correct substitution into formula M1

=
$$3.16 \times 10^{-19}$$
 (J)
min of 2 sig figs; allow 3.1 for $h = 6.6 \times 10^{-34}$ A1

(ii)
$$1.0 \times 10^{-3}/3(.2) \times 10^{-19} (= 3.1 \times 10^{15})$$

accept 3×10^{15} ; the mark is for the expression B1

(iii)energy levels explanation: electrons have discrete energies in atom/AW
QWC markB1each photon produced by electron moving between levels
good diagram can score marksB1photon energy equal to energy difference between levels
 $allow E_1 - E_2 = hf$ or similarB1electron loses energy/making transition in correct directionB1

[7]

5.

	(iv)	blue light has a higher frequency/shorter wavelength than red light	B1	
		energy per photon is higher (so fewer needed to produce one mW)	B1	
(b)	(i)	vertical arrow up approximately through X <i>allow tolerance e.g.</i> $\pm 10^{\circ}$	B1	
	(ii)	I = 0.2 ne; = 0.2 × 3.2 × 10 ¹⁵ × 1.6 × 10 ⁻¹⁹ <i>max 2 marks if forget 0.2 factor</i> = 1.0(24) × 10 ⁻⁴ (A) or 0.10 mA (9.6 × 10 ⁻⁵ if using 3 × 10 ¹⁵) 0.51 mA (0.48) if forget 0.2 factor	C2	
	(iii)	reflection/absorption at top layer; light/some photons reach bottom layer; photons below threshold energy/photons absorbed by electrons without release; recombination of ion pairs in insulating layer; scattering of light/photons out of insulating layer award mark for any sensible comment; see examples given	B1 ['	14]
(a)	(i)	paths spread out after passing through a gap or around an obstacle/AW	B1	
	(ii)	wavelength of electrons <i>allow electrons behave as waves/AW</i> must be comparable/of the order of magnitude of the atomic spacing <i>allow must be about 10⁻¹⁰ m</i>	M1 A1	
(b)	$\lambda = h$ v = 6	/mv mark for selecting formula $5.6(3) \times 10^{-34} / 9.1(1) \times 10^{-31} \times 1.2 \times 10^{-10}$	C1	
	= 6.0	correct manipulation and subs. shown) or $6.1 \times 10^6 \text{ (m s}^{-1}\text{)}$ give all 3 marks for answers to 3 figs or more: i.e. 6.04, 6.06 or 6.07	M1	
			A1	

6.

(c)	(i)	$eV = \frac{1}{2}mv^2$	
		mark for algebraic equation	C1
		$V = mv^2/2e = 9.1 \times 10^{-31} \times (6.0 \times 10^6)^2/2 \times 1.6 \times 10^{-19}$	
		mark for correct substitution	C1
		$= 1.0(2) \times 10^2 (V)$	CI
		give 1 mark max for k.e. = $1.6(4) \times 10^{-17} J$	
		using 6.1 gives 104 (V)	4.1
	(::)		AI
	(11)	attracted by anode or they will be attracted back to the cathode/slowed down if cathode positive	
		award mark if answer indicates this idea	
			B1
(a)	(i)	line spacing d = $1/(300 \times 1000)$ (= 3.3×10^{-6} (m))	
		look for clear reasoning to award mark	
	<i>(</i>)		B1
	(11)	$\sin \theta = \lambda/d$ = 6.3 × 10 ⁻⁷ /3.3 × 10 ⁻⁶ = 0.19	
		$\theta = 11$ degrees	
		rounding error of 0.2 here gives 11.9° 11.9° gets 2 marks	
			C1 C1
			A1
	(iii)	spots can be seen where $n = d \sin \theta / \lambda$ maximum n when $\sin \theta = 1$ (giving $n = 5.3$) so $n = 5$ can be seen thus 5 spots on either side of straight through + straight through = 11	
		accept basic idea of orders for first mark	
		N.B. calculation not necessary	B1
			B1 B1
(b)	(i)	$\epsilon = hc/\lambda = 6.6 \times 10^{-34} \times 3.0 \times 10^8/6.3 \times 10^{-7}$	
		$= 3.14 \times 10^{-19} $ (J)	C1
			A1
	(ii)	$5.0 \times 10^{-4} / 3.14 \times 10^{-19} = 1.6 \times 10^{15}$	
		<i>accept</i> 3.2×10^{-19} (<i>J</i>)	
		ecf from $b(i)1$	C1
			A1

4

[10]

[11]

7.	(i)	(Minimum) energy needed to free an electron /an electron to escape		
		(from the metal surface)	B1	
	(ii)	speed of light / 3×10^8 (m s ⁻¹) / c	B1	
	(iii)	1. $hf = \phi + KE_{(max)}$ (Allow any subject)	C1	
		$KE_{max} = 2.8 - 1.1 = 1.7 (eV)$	C1	
		$KE_{max} = 1.7 \times 1.6 \times 10^{-19}$		
		$KE_{max} = 2.7 \times 10^{-19} (J)$	A1	
		2. $\frac{1}{2}mv^2 = 2.7 \times 10^{-19}$ (Possible ecf)	C1	
		$v = \sqrt{\frac{2 \times 2.7 \times 10^{-19}}{9.1 \times 10^{-31}}}$		
		$v = 7.7 \times 10^5 (\text{m s}^{-1})$	A1	
	(iv)	No change (because the energy of the photon remains the same)	B1	
				[8]
8.	<i>Elec</i> 1. 2. 3.	Extromagnetic waves - Any two from: EM wave / light behave like 'particle'/ photon / quantum of energy $E = hf/E = hc/\lambda$ E is the energy of photon and f is the frequency (of EM waves) / λ is the wavelength	B1 × 2	
	4. 5.	Moving electrons - Any <u>four</u> from: Moving / travelling particle / electron behaves like a wave Mention of the <u>de Broglie</u> (equation) $\lambda = \frac{h}{2}$	B1 × 4	
	0. 7.	mv λ is the wavelength of <u>particle/electron</u> , <i>m</i> is the mass (of particle) and v is speed		
	8. 9.	Electrons can be diffracted (Can score on diagram) Electrons travelling through matter /graphite (show diffraction effects) (Can score on diagram if not scored in 8 above)		
	10.	Electrons diffract because their wavelength is comparable to the size of atom /gap between atoms (Do not allow 'particles in place of atoms)	18	
	QW	C Spelling, punctuation and grammar Organisation	B1 B1	[8]