1. (i) Visible (light)
(ii) work function $=1.9 \times 1.6 \times 10^{-19} \quad$ M1
work function $=3.04 \times 10^{-19}(\mathrm{~J}) \approx 3.0 \times 10^{-19}(\mathrm{~J}) \quad \mathrm{A} 0$
(iii) 1. $\mathrm{E}=\mathrm{hf} / E=\begin{gathered}h c \\ \lambda\end{gathered}$

C1

$$
\begin{aligned}
& E=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{5.1 \times 10^{-7}} \\
& E=3.9 \times 10^{-19}(\mathrm{~J})
\end{aligned}
$$

2. $\mathrm{hf}=\phi+\mathrm{KE}_{(\max )} / \mathrm{hf}=\phi+1 / 2 \mathrm{mv}^{2}$
(Allow $\mathrm{E}=\phi+1 / 2 \mathrm{mv}^{2}$ if E is qualified in (iii)1.) C1
$3.9 \times 10^{-19}=3.0 \times 10^{-19}+\mathrm{KE}_{(\max )} / 3.9 \times 10^{-19}=3.04 \times 10^{-19}+\mathrm{KE}_{(\max )} \mathrm{C} 1$
$\mathrm{KE}=9.0 \times 10^{-20}(\mathrm{~J}) / \mathrm{KE}=8.6 \times 10^{-20}(\mathrm{~J}) \quad($ Possible ecf)
(iv) No change (to maximum KE of electron)

B1
Each photon has same energy (but there are fewer photons) B1
(v) number of photons $=\frac{80 \times 10^{-3}}{3.9 \times 10^{-19}}\left(\approx 2.05 \times 10^{17}\right) \quad($ Possible ecf $)$
number of electrons $=0.07 \times \frac{80 \times 10^{-3}}{3.9 \times 10^{-19}}$
number of electrons $=1.44 \times 10^{16}\left(\mathrm{~s}^{-1}\right) \approx 1.4 \times 10^{16}\left(\mathrm{~s}^{-1}\right)$
2. (i) The minimum frequency needed to free an electron (from the surface of a metal)B1
(ii)1 Line extended intersects (the $f$ axis at) this value / At this frequency, $\mathrm{E}_{\mathrm{k}}=0 \quad \mathrm{~B} 1$
(ii)2 $(\phi=) h \times 5.0 \times 10^{14} \quad / \quad(\phi=) 6.63 \times 10^{-34} \times 5.0 \times 10^{14} \quad \mathrm{C} 1$
work function energy $=3.3 \times 10^{-19} \mathrm{~J} \quad$ A 1
(iii)1 1 The gradient / slope of the line is the same B1

The gradient is equal to $h$ / independent of the metal B1
(iii)2 The line is shifted to the right

B1
The threshold frequency is greater (A W ) B1
3. A ny six from: ..... (Allow A W )

1. Photoelectric effect is the removal of electrons (from metals) when exposed to light / u.v. /e.m. radiation / photons ..... B 1
2. Surface electrons are involved / electrons released from the surface ..... B1
3. A single photon interacts with a single electron ..... B 1
4. Energy is conserved (in the interaction) ..... B 1
5. Energy of photon $=h f$ or $\frac{h c}{\lambda}$ ..... B 1
6. Reference to Einstein's photoel ectric equation: $h f=\phi+\mathrm{KE}_{(\max )}$ ..... C1
7. photon energy $=$ work function (energy) + (maximum) KE (of electron) ..... A 1
8. PE effect takes place / electron(s) released when $h f>\phi / h f=\phi /$ frequency is greater / equal to threshold frequency ..... B 1
9. The (maximum) KE of electron is independent of intensity when electrons are emitted ..... B 1
10. Intensity increases the rate / number of electrons when emission occurs ..... B 1
11. PE effect does not take place / no electrons emitted when $h f<\phi /$ frequency < threshold frequency ..... B 1
12. Intensity has 'no effect' when there is no emission of electrons ..... B1
QWC for 'organisation' ..... B 1
13. (a) (i)
i) $\mathrm{E}=\mathrm{hc} / \lambda=6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 6.3 \times 10^{-7}$
mark is for correct substitution into formula $=3.16 \times 10^{-19}(\mathrm{~J})$ min of 2 sig figs; allow 3.1 for $h=6.6 \times 10^{-34}$
(ii) $1.0 \times 10^{-3} / 3(.2) \times 10^{-19}\left(=3.1 \times 10^{15}\right)$
accept $3 \times 10^{15}$; the mark is for the expression
(iii) energy levels explanation: electrons have discrete energies in atom/A W QWC mark
each photon produced by electron moving betw een levels
good diagram can score marks
photon energy equal to energy difference between levels
allow $E_{1}-E_{2}=$ hf or similar
electron loses energy/making transition in correct direction
(iv) blue light has a higher frequency/shorter wavelength than red light
energy per photon is higher (so fewer needed to produce one mW )
(b) (i) vertical arrow up approximately through $\mathbf{X}$
allow tolerance e.g. $\pm 10^{\circ}$
(ii) I $=0.2 \mathrm{ne} ;=0.2 \times 3.2 \times 10^{15} \times 1.6 \times 10^{-19}$
max 2 marks ifforget 0.2 factor $=1.0(24) \times 10^{-4}(\mathrm{~A})$ or $0.10 \mathrm{~mA}\left(9.6 \times 10^{-5}\right.$ if using $\left.3 \times 10^{15}\right)$
$0.51 \mathrm{~mA}(0.48)$ if forget 0.2 factor
(iii) reflection/absorption at top layer; light/some photons reach bottom layer; photons below threshold energy/photons absorbed by electrons without release; recombination of ion pairs in insulating layer; scattering of light/photons out of insulating layer
award mark for any sensible comment; see examples given
B1
14. (a) (i) paths spread out after passing through a gap or around an obstacle/A W
(ii) wavelength of electrons
allow electrons behave as waves/AW
must be comparable/of the order of magnitude of the atomic spacing
allow must be about $10^{-10} \mathrm{~m}$
(b) $\quad \lambda=h / m v$
mark for selecting formula
$v=6.6(3) \times 10^{-34} / 9.1(1) \times 10^{-31} \times 1.2 \times 10^{-10}$
correct manipulation and subs. shown
$=6.0$ or $6.1 \times 10^{6}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
give all 3 marks for answers to 3 figs or more: i.e. 6.04, 6.06 or 6.07
(c) (i) $\mathrm{eV}=1 / 2 \mathrm{mv}^{2}$
mark for algebraic equation
$v=m v^{2} / 2 \mathrm{e}=9.1 \times 10^{-31} \times\left(6.0 \times 10^{6}\right)^{2} / 2 \times 1.6 \times 10^{-19}$
mark for correct substitution
C1

C1
$=1.0(2) \times 10^{2}(\mathrm{~V})$
give 1 mark max for k.e. $=1.6(4) \times 10^{-17} \mathrm{~J}$
using 6.1 gives 104 (V)
(ii) electrons should be repelled by cathode and/or attracted by anode or they will be attracted back to the cathode/slowed down if cathode positive
award mark if answer indicates this idea
6. (a) (i) line spacing $\mathrm{d}=1 /(300 \times 1000)\left(=3.3 \times 10^{-6}(\mathrm{~m})\right)$
look for clear reasoning to award mark
(ii) $\sin \theta=\lambda / d$

$$
=6.3 \times 10^{-7} / 3.3 \times 10^{-6}=0.19
$$

$\theta=11$ degrees
rounding error of 0.2 here gives $11.9^{\circ}$ $11.9^{\circ}$ gets 2 marks
(iii) spots can be seen where $n=d \sin \theta / \lambda$ maximum $n$ when $\sin \theta=1$ (giving $n=5.3$ ) so $n=5$ can be seen thus 5 spots on either side of straight through + straight through $=11$
accept basic idea of orders for first mark
N.B.calculation not necessary
(b)

$$
\varepsilon=h c / \lambda=6.6 \times 10^{-34} \times 3.0 \times 10^{8} / 6.3 \times 10^{-7}
$$

$$
=3.14 \times 10^{-19}(\mathrm{~J})
$$

(ii) $5.0 \times 10^{-4} / 3.14 \times 10^{-19}$
$=1.6 \times 10^{15}$
accept $3.2 \times 10^{-19}(\mathrm{~J})$
ecf from $\mathbf{b}(\mathrm{i}) 1$
7. (i) (M inimum ) energy needed to free an electron /an electron to escape (from the metal surface)
(ii) speed of light $/ 3 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) / \mathrm{C} \quad \mathrm{B} 1$
(iii) $1 . \mathrm{hf}=\phi+\mathrm{KE}_{(\max )}$
(Allow any subject)
C1
$K E_{\text {max }}=2.8-1.1=1.7(\mathrm{eV})$
$K E_{\max }=1.7 \times 1.6 \times 10^{-19}$
$K E_{\text {max }}=2.7 \times 10^{-19}(\mathrm{~J})$
A1
2. $1 / 2 \mathrm{mv}^{2}=2.7 \times 10^{-19} \quad$ (Possible ecf)
$v=\sqrt{\frac{2 \times 2.7 \times 10^{-19}}{9.1 \times 10^{-31}}}$
$v=7.7 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
(iv) No change (because the energy of the photon remains the same) B1
8. Electromagnetic waves - Any two from:

1. EM wave / light behave like 'particle'/ photon / quantum of energy
2. $\mathrm{E}=\mathrm{hf} / \mathrm{E}=\mathrm{hc} / \lambda$
3. $E$ is the energy of photon and $f$ is the frequency (of $E M$ waves) $/ \lambda$ is the wavelength

M oving electrons - Any four from:
4. M oving / travelling particle / electron behaves like a wave
5. M ention of the de Broglie (equation)
6. $\lambda=\frac{h}{m v}$
7. $\quad \lambda$ is the wavelength of particle/electron, $m$ is the mass (of particle) and $v$ is speed
8. Electrons can be diffracted (Can score on diagram)
9. Electrons travelling through matter /graphite (show diffraction effects)
(Can score on diagram if not scored in 8 above)
10. Electrons diffract because their wavelength is comparable to the size of atoms /gap between atoms (Do not allow 'particles in place of atoms)
QWC Spelling, punctuation and grammar B1 Organisation B1

